
N92-14094

Correlation Techniques To Determine Model Form In

Robust Nonlinear System Realization/Identification

Greselda h Stry 1 and D. Joseph Mook 2

Department of Mechanical and Aerospace Engineering

State University of New York at Buffalo

Buffalo, New York 14260

716-636-3058

ABSTRACT

The fundamental challenge in identification of nonlinear dynamic systems is determining the

appropriate form of the model. A robust technique is presented in this paper which essentially

eliminates this problem for many applications.

The technique is based on the Minimum Model Error (MME) optimal estimation approach.

A detailed literature review is included in which fundamental differences between the current

approach and previous work is described. The most significant feature of the current work is the

ability to identify nonlinear dynamic systems without prior assumptions regarding the form of the

nonlinearities, in contrast to existing nonlinear identification approaches which usually require

detailed assumptions of the nonlinearities. Model form is determined via statistical correlation

of the MME optimal state estimates with the MME optimal model error estimates. The example

illustrations indicate that the method is robust with respect to prior ignorance of the model, and

with respect to measurement noise, measurement frequency, and measurement record length.
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INTRODUCTION

The widespread existence of nonlinear behavior in many dynamic systems is well-

documented, e.g, Thompson and Stewart [1]; Nayfeh and Mook [2]. In particular, virtually

every problem associated with orbit estimation, flight trajectory estimation, spacecraft dynamics,

etc., is known to exhibit nonlinear behavior. Many excellent methods for analyzing nonlin-

ear system models have been developed. However, a key practical link is often overlooked,

namely: How does one obtain an accurate mathematical model for the dynamics of a particular

complicated nonlinear system? General methods for actually obtaining accurate models for real

physical systems are not nearly as widespread or well developed as are the techniques available

for analyzing models.

Accurate dynamic models are necessary for many tasks, including basic physical understand-

ing, analysis, performance prediction, evaluation, life cycle estimation, control system design,

etc. For example, most filter design assumes white process noise, yet many nonlinear effects are

inherently non-zero mean; e.g., quadratic nonlinearities are always positive. In order to obtain

a model with truly zero mean process noise for filter design purposes, all of the quadratic terms

(and many other nonlinearities) must be well modeled. However, the complexity of many real

systems greatly diminishes the possibility of accurately constructing a dynamic model purely

from analysis using the laws of physics.

Identification is the process of developing an accurate mathematical model for a system,

given a set of output measurements and knowledge of the input. Many well developed and

efficient identification algorithms already exist for linear systems (e.g., [3]-[7]). These often

may be employed to model nonlinear systems when the system nonlinearities are small, and/or

the system operates in a small linear regime. However, linearization does not work well (if

at all) in every application, and even when it does provide a reasonable approximation, the

approximation is normally limited to a small region about the operating point of linearization.

Consequently, there is a real need for nonlinear identification algorithms. If nonlinearities are a

predominant part of a system's behavior, using a linear model to describe such a system leads

to inconsistencies ranging from inaccurate numerical results to misrepresentation of the system's

qualitative behavior. Many important characteristics of nonlinear behavior, such as multiple

steady-states, limit cycles, hysteresis, softening or hardening systems, chaos, etc., have no linear

equivalent. Since nonlinearities are seldomly easily characterized, identification techniques may

prove beneficial in developing accurate mathematical representations of nonlinear systems.

Numerous methods for the identification of nonlinear systems have been developed in the

past two decades. Many of these techniques are reviewed in Natke, Juang and Gawronski [8],

Billings [9], and Bekey [10]. Most methods fall into one of the following categories:

[] describing the nonlinear system using a linear model

[] the direct equation approach

[] representing the nonlinear system in a series expansion, and obtaining the respective coef-

ficients either by using a regression estimation technique, by minimizing a cost functional,

by using correlation techniques, or by some other approach
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[] obtaining a graphical representation of the nonlinear term(s), then finding an analytical

: model for the nonlinearity

With such diversity of nonlinear identification techniques, the choice of a particular algorithm

may be based on criteria such as: the degree to which prior assumptions of the model form

affect the user's effort in applying the algorithms; the number of iterations required; the

sensitivity to the presence of measurement noise in the data; the number of state measurements

needed; whether or not knowledge of the initial conditions is required; the kind of forcing

input(s) required or permitted (step, white gaussian noise, sinusoidal, etc.); the ability to handle

hysteritic or discontinuous nonlinearities; the degree of a priori knowledge of system properties

required; and the computational requirements. Most algorithms differ widely in at least some of

these comparisons; the choice of a particular technique depends on the needs of the particular

application.

Among the methods which linearize the nonlinear system are those presented by Jedner and

Unbehauen [11] and Ibanez [12]. Jedner and Unbehauen represent a nonlinear system, which

may often operate in small regions around a number of operating points, by an equivalent number

of linear submodels. It is assumed that the system operates at only a few points. Although the

model may work well for controller design, the points at which the system is operating must be

known and the linear models apply only within the operating regions. Ibanez takes a slightly

different approach by assuming the system response to be periodic at the forcing frequency. An

approximate transfer function is constructed. The transfer function is dependent on the amplitude

as well as on the exciting frequency and is valid only within the region of exciting frequencies.

The direct equation approach is used by Yasuda, Kawamura and Watanabe [13], [14]. The

input and output measurements of a dynamic process are expressed in a Fourier Series using, for

example, an FFT algorithm. The system nonlinearity is represented as a sum of polynomials with

unknown coefficients. Applying the principle of harmonic balance, the polynomial coefficients

as well as the other system parameters are obtained accurately. Knowledge of the nonlinearity

is needed to construct the polynomial. Truncation in the Fourier Series expansion of the input

or output may lead to error.

The regression estimation approach is used by Billings and Voon [15] and Greblick and

Pawlak [16]. Billings and Voon use the NARMAX model (Nonlinear Auto Regressive Moving

Average model with eXogenous inputs) to represent the nonlinear system. A stepwise regression

method determines the significant terms in the NARMAX model. Then a prediction-error

algorithm provides optimal estimates of the final model parameters. Greblick and Pawlak

represent the linear dynamic submodel by an ARMA model and the nonlinearities by a Borel

function. A non-parametric kernel regression estimation is employed to obtain the final analytical

model.

Kortman and Unbehauen [17] and Distefano and Rath [18] use the minimization of an error

cost function as a means of obtaining the coefficients of the functions used to represent the

nonlinearities. The method presented by Kortman and Unbehauen uses only system input and

output information to estimate the polynomial representing the nonlinearities and the parameters
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of the linear components.It is robust in thepresenceof noise, althoughiteration is necessary.
Distefanoand Rathpresenttwo techniques,a non-iterativedirect identificationand an iterative
direct identification.In thefirst technique,measurementof all variablesis requiredandthemodel
parametersareobtainedthroughtheminimizationof anerror function. In the secondtechnique,
iteration is usedto minimize a cost function yielding the systemparametersin addition to the
statetrajectories.In Distefanoand Rath,the nonlinearmodel form is alsotakento beknown.

In other techniques,asin statisticallinearization,a nonlinearrelation is replacedby a linear
equivalentgain. Broersen[19] extendsthe techniqueof statisticallinearizationby representing
thenonlinearityasalinearcombinationof anumberof arbitraryfunctions.Correlationtechniques
arethenusedto determinethecoefficientsof thesefunctions.The numberand typeof functions
selecteddependson thedesiredaccuracyaswell assomeknowledgeof thesystemnonlinearity.
Reasonableaccuracy is obtained in the presenceof noise and no iterations are necessary.
Although someof thebasicpropertiesof thetrue nonlinearoutputarepreserved,it is limited to
only randomexcitation,and knowledgeof all statesand forcing termsis required.

In themethodof multiplescales(Hanagud,MayyappaandCraig[20]), aperturbationsolution
to the nonlinear equationof motion is obtained. An objective function is built employing
an integral least squaresapproach. The minimization of the functional yields the unknown
parameters.Data on only one field variable is necessary,and the method is effective in the
presenceof high noise. The method of multiple scales,however, is restricted to systems
with small damping and slight nonlinearitiesand, as in most other methods,the form of the
nonlinearity is assumeda priori. The methodtypically requiressomealgebraicmanipulations
which may bequite involved,and thesemanipulationsareonly valid for a particularassumed
nonlinearform. If the assumednonlinearform is changed,thealgebramust be repeated.

Severaltechniquesdescribethe nonlinearsystemusingtheVolterraor Wienerkernels.The
Volterraseriesconsistsof thesummationof impulseresponsesof increasingdimensionality.The
Wiener seriesis also a setof orthogonalfunctionsin which the input is white gaussiannoise.
MarmarelisandUdwadia[21], for example,estimatethefirst andhigherorderkemelsappearing
in the Volterra seriesusing correlationtechniques.Chen,Ishii and Suzumura[22] usecross-
correlationfunctionsin additionto the VolterraandWienerseriesto describenonlinearmodels
and to show the relation betweenthe systeminner structureand the series. Although weakly
nonlinearsystemscanbedescribedby thefirst few kernels,for stronglynonlinearsystemsthese
seriesgive accuratenumericalresultsonly at theexpenseof anexcessivenumberof coefficients.
This rendersthe analyticalmodel impracticalfor control applications.

Other popular seriesusedin nonlinear identification are orthogonalpolynomials such as
Legendre(Wangand Chan [23]), Chebyshev,and Jacobi (Horn and Chou [24]). Horn and
Chou expandthe variablesof the systeminto a shiftedJacobi series,reducing the nonlinear
stateequationinto a linearalgebraicmatrixequation.The unknownparametersof thenonlinear
systemare thenestimatedusing least squares. Even though the algorithm works well in the
presenceof noise,the nonlinearform must beknown a priori.
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Methods for the identification of nonlinearsystemshave also been developedbasedon
the extendedKalman filter. The extendedKalman filter is the linear Kalman filter applied

to nonlinear systems by linearizing the nonlinear model into a Taylor series expansion about

the estimated state vector. Yun and Shinozuka [25] apply the extended Kalman filter for the

parameter estimation of a quadratic term. The state vector is augmented by including the

unknown parameters in addition to the state variables. Through a series of iterations, the response,

as well as the unknown parameters, are estimated by the Kalman filter. Among its disavantages

are high sensitivity to initial conditions, in particular if the initial conditions are barely known.

The nonlinear form must be chosen a priori in order to estimate the corresponding parameter(s).

Hammond, Lo and Seager-Smith [26] use an optimal control technique based on optimal

control methods employed for linear system deconvolution. The form of the linear model is

assumed to be known as well as the input and the output. A cost functional consisting of

the weighted sum of the square of the error (between the actual and estimated output) yields

an optimal estimated input. The estimated input and the actual input are used to obtain the

nonlinearity as a function of the state variables. Although no previous assumption is made of

the nonlinearities, there is no provision to deal with noise.

All of the techniques outlined above have proven useful in certain applications. However,

all of them are subject to one or more of the following shortcomings:

1. The form of the nonlinearity (quadratic, cubic, exponential, etc.) must be assumed a priori.

This is a very serious drawback, because the identification algorithm can only attempt to

find the best model in the assumed form. If the form is assumed incorrectly, the resulting

model may be so poor as to be useless, or it may appear to fit the data well enough that

the user erroneously concludes that the correct model has been obtained. Also, for many

techniques of this type, the effort required to test a given form is considerable, which greatly

diminishes the effectiveness since multiple form tests are less likely to be conducted.

2. Techniques which attempt to avoid the problem of a priori model form assumption through

the use of series expansions generally eliminate any possibility of understanding the under-

lying physics. Thus, although a good fit of the data might be achieved using a sufficient

number of terms in the series, physical insight is lost. Moreover, large systems and/or par-

ticularly complicated behavior may require that a very large number of terms be used to

obtain a given level of accuracy.

3. The presence of noise in the measurement data is not rigorously treated, yet noise is generally

unavoidable.

4. Initial conditions must be known in order to implement the algorithm.

5. The algorithm can only be implemented if the data is obtained using very specific system

excitations.

The algorithm of the current paper compares favorably with existing algorithms in most of

the categories listed above. It is robust with respect to measurement noise; does not require

knowledge of the initial conditions; is independent of the forcing (but, like all methods, assumes

that it is known); is not computationally prohibitive; and, most importantly, it requires minimal
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a priori assumptionsregardingtheform of themodelor thesystemproperties.In fact, usingthe
correlationtechniqueoutlined in the next section,the algorithmessentiallyeliminatesthe need
to ever assumethe nonlinearmodel form.

The identification algorithm is basedon a combinationof Minimum Model Error (MME)
stateestimation,correlation techniques,and leastsquares.MME was first describedby Mook
andJunkins [27]. The MME combinesthe availablemeasurementsand an assumedmodel of
thesystemto produceoptimal estimatesof the statesandthe modelerror. The assumedmodel
representsan initial attemptto model the systemusingdirect analysis,but may be extremely
poor. Given the noisyoutputmeasurementsof the system,MME estimatesthe statehistoriesas
well as the error in the assumedmodel. In previouswork, the correct form and corresponding
parametersof thenonlinearmodelwerethenestimatedin a trial-and-errorfashion,by assuming
a nonlinear (in the states)form of the error terms,and thendeterminingthe best least-squares
fit betweenthe stateestimatesandthemodel errorestimates.Thus, althoughthe MME portion
of the algorithmdid not requirethe model form to beassumed,thesubsequentleast-squaresfit
betweenthe stateestimatesand themodelerror estimatesdid. In Mook [28] it wasshownthat
thisapproachcouldaccuratelyidentify termsin aDuffing oscillator,in thepresenceof noiseand
sparsemeasurements.The meth_:worked well evenwhenonly a crudemodelof the dynamic
systemwasassumed,andtheerrormodelusedfor the least-squaresfit containednumerousterms
in addition to the correctone(s). Later, in Mook and Stry [29], a simple harmonicoscillator
with quadratic feedbackwas simulatedon an analogcomputer. The algorithm was shown to
accuratelyidentify the nonlinearmodel from analogmeasurements.

In this paper,the identificationof themodel from the_E-produced stateandmodelerror
estimatesis improvedby usingcorrelationtechniquesto selecttheform of the correctionterms.
The correctionterms,when addedto the initially assumedmodel, yield the true model of the
system. The correctiontermsmay consistof a combinationof linear and nonlinear functions.
An extensivelibrary of linear and nonlinear functions has beenassembled.The correlation
techniqueis usedto selectthe true forms from the library. Evenwhen the true form of the
nonlinearitywas not presentin the library, thecorrelationtechniquepicks the closestform(s),
typically, the first term(s)in theTaylorSeriesexpansion.Oncetheforms havebeenselectedby
the correlationalgorithm, least-squaresis usedto determinethemodel parameters.

IDENTIFICATION ALGORITHM

In this section, the identification algorithm is explained. First, the MME technique is briefly

reviewed, and then the correlation technique used to automate the model form determination is

explained in detail.

The MME may be summarized as follows (a more detailed explanation may be found

in Mook and Junkins [27]). Suppose there is a nonlinear system whose exact analytical

representation is unknown, but for which output measurements are available. Using whatever

means are available (analysis, finite elements, etc.), a system model is constructed. As shown

in [27]-[29], the MME works well even if this system model is poor. The MME combines the
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assumedmodelwith the measurementsto produceoptimalestimatesof (i) the statetrajectories,
and (ii) the error in the model. In the presentwork, thesestateandmodel error estimatesare
used for systemidentification.

Considera forced nonlineardynamic systemwhich may be modeledin state-spaceform
by the equation

_(t) = A z(t) + F(t) + f(z_(t), z_"(t)) (1)

where z(t) is the n x 1 state vector consisting of the system states, A is the n x n state matrix,

_.F(t) is an n x 1 vector of known external excitation, and .f(z(t), a_(t)) is an n x 1 vector which

includes all of the system nonlinearities. State-observable discrete time domain measurements

are available for this system in the form

,2(tk)= + to < tk < tl (9)

where _(tk) is an m x 1 measurement vector at time tk, g-k is the accurate model of the

measurement process, and v k represents measurement noise, v__k is assumed to be a zero-mean,

gaussian distributed process of known covariance Rk. The measurement vector __(tk) may

contain one or more of the system states. To implement MME, assume that a model, which

is generally not the true system model because of the difficulties inherent in obtaining the true

system model, is constructed in state-vector form as

_.(t) = Az(t) + F__(t) (3)

Here, we show a linear model because in practice, linearization is the most common approach

to modeling nonlinear systems. MME uses the assumed linear model in Eq. (3) and the noisy

measurements in Eq. (2) to find optimal estimates of the states and of the model error.

The model error, which includes the unknown nonlinear terms of the system, is represented

by the addition of a term to the assumed linear model as

_ Ct)= a_,C0+_FCt)+ d(t) C4)

where _d(t) is the n x 1 model error to be estimated along with the states.

A cost functional, J, that consists of the weighted integral square of the model error term plus

the weighted sum square of the measurement-minus-estimated measurement residuals, is formed:

M

J= E{[_l(tk) -- gk(___(7_k),tk)]Tl_kl__(_k) -- gk(__.(tk),7_k)]}
k=I

/i'+ g(,-)r w_d(,-)& (5)

where M is the number of measurement times, __(tk) is the estimated state vector and W is a

weight matrix to be determined.
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or is minimized with respect to the model error term, d(t). The necessary conditions for the

minimization lead to the following two point boundary value problem (TPBVP), (see Geering

[30]),

__(t)= a__(t)+ F(t) + d(t)
__(t)= -ara-(t)

_a(t)= -½Wa-(t)

a-(tD =a-(q) + 2nkn;l_(tk) - h(_(tk), tk)]
6g

(5_)

(55)

(5c)

(5d)

•_(to) =_ or a_(to)=0 (5e)
_(tf)=__ I or a-(tf)=o (5f)

where A_(t) is a vector of costates (Lagrange multipliers). Estimates of the states and of the model

error are produced by the solution of this two-point boundary value problem. The estimates

depend on the particular value of W. The solution is repeated until a value of W is obtained

which produces state estimates which satisfy the "covariance constraint", explained next.

According to the covariance constraint, the measurement-minus-estimated measurement

residual covariance matrix must match the measurement-minus-truth error covariance matrix.

This may be written as

__(tk) - gk(__(tk),tk)]T__(tk) --_gk(__(/k), t_)] _ Rk (6)

During the minimization, the weight W is varied until the state estimates satisfy the covariance

constraint, i.e., the left hand side of Eq. (6) is approximately equal to the right hand side. The

model error is, therefore, the minimum adjustment to the model required for the estimated states

to predict the measurements with approximately the same covariance as the measurement error.

The TPBVP represented by Eqs. (5a) to (5f) contains jumps in the costates and, consequently,

in the model error. As evident from Eq. (5d), the size of the jump is directly proportional to

the measurement residual at each measurement time. The noisier the measurements, the larger

the jump size. A multiple shooting algorithm, developed by Mook and Lew [31], converts this

jump-discontinuous TPBVP into a set of linear algebraic equations which may be solved using

any linear equation solver. Multiple shooting also facilitates the analysis of a large number of

measurements, by processing the solution at the end of every set of jumps.

Correlation is a measure of the relationship that exists between two variables. The more

highly correlated two variables are, the more closely will the change in one variable correspond to

a change in the other variable. The cross-correlation coefficient between two discrete variables,

say a: and y, is defined as (see Newland [32] or Witte [33])

c(_,u) = ..Ein=1(_i- _)(u, - _) (7)
O'zO'y_
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wheren is the number of data points and the overbar denotes the mean of those n points, o'z

is the standard deviation of the variable z and is defined as

O.z = i=1 i-

C(z, y) is a measure of the linear relationship between variables :_ and y. The value of C(z, y)

lies in the range -1 < C(z,y) < 1. If, for instance, changes in the value of z correspond to

perfectly predictable (linearly) changes in the value of y, where the changes in both variables

are of the same sign, then the value of C(z, y) is 1. If the changes are of opposite sign but

still perfectly predictable, then the value of C(z.,y) is -1. If changes in the values of z and y

tend to correspond in sign but are not perfectly predictable, then 0 < C(:e,y) < 1. If changes

in the values of z and y tend to be of opposite sign but are not perfectly predictable, then

-1 < C(z,y) < 0. If there is no linear relationship between the values of z and y, then

C(z, y) = 0. For example, suppose z and y are multiples of each other, :_ = K • y, where K

is an arbitrary constant of proportionality. Then

K(zi- _ 1.0 (S)
= E :I K( j- e)2 -

The true functional form of the model error can be found by calculating the correlation of the

MME model error estimates with functions of the MME state estimates. If the functional form of

the actual system is used, and if the estimates from MME are perfect, then C(z,y) = 1.0. Thus,

an algorithm may be constructed which performs nonlinear system identification by (i) utilizing

the MME to process the available measurements and the initial model in order to produce state

estimates and model error estimates, and (ii) testing the correlation between the state estimates

and the model error estimates usiJ:g a "sufficient number" of functional forms so that the actual

form is included among those tested. The MME does not require that the correct form of the

model be known a priori. The correlation tests may be performed using an existing library of

nonlinear functional forms, without input from the user. Thus, if the library is complete (in

the sense that it contains the actual model form), the identification of the nonlinear model is

accomplished, yet at no point in the algorithm is the user required to assume the correct model

form.

The success of the algorithm is determined by the ability of the MME to produce accurate

state and model error estimates, and by the completeness of the library of nonlinear functions

to be used in the correlation test. We now address these issues in order.

The MME has been shown to consistently produce state and model error estimates of high

accuracy in the presence of high measurement noise, low measurement frequency, and poor

initial model [27-29]. Generally, however, some noise is still present in both the state estimate

and the model error term, although these noise levels are considerably less than the noise in the

original data. Let the model error term be given by _,eorreetion -- 2: + _ where _ is the noise.
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The cross-correlation between the error term and the test function y becomes

oCt,y) Ei"=lCxi - _)(y_ - _7) + E_--1 _(_j - _7)= _ 1.0 (9)

As long as the noise is negligible all terms containing _ are small and affect the result only

slightly. Thus, the correlation calculated for the actual function is close to, but not exactly equal

to, 1, while the correlation calculated for incorrect terms remains close to 0. ff the level of noise

• is excessive, say, of comparable magnitude to one or more of the actual nonlinear model terms,

then the ability of the correlation test to distinguish this term from similar terms may be greatly

reduced or eliminated. However, subsequent least-squares fit of the terms has, in every case

tested, correctly selected the actual nonlinear function from among those which the correlation

test could not distinguish. An example of this is shown in the next section.

The issue of completeness of the library is now addressed. The error term may be composed

of more than one function from the library, or the actual function may be missing from the

library. Consider first the case where the actual error is a combination of library terms, say, two

terms. The error term may be written :_eorreeUo,_ - Xl q-x2 and the cross-correlation has the form

o" 2+ 9+ 1

The cross-correlation is highest for the term which constitutes the largest part of the error. Thus,

it is desirable to execute the algorithm iteratively. The library term which constitutes the largest

portion of the actual model error is identified first and then added to the MME model. The

entire process (including MME) is then repeated, so that new state and model error estimates are

obtained (note that the change in state estimates should be minimal, while the change in model

error estimates should be a large reduction in magnitude). The largest term remaining in the

model error is identified in each pass, then added to the initial MME model.

An alternative to iterative application of the algorithm is to test the correlation of combi-

nations of the library functions. An algorithm can be constructed which tests every possible

combination of the functions explicitly contained in the library. This approach has not been

attempted in the examples which follow.

If the actual model error is not present in the library, then test cases show that the highest

correlation values are calculated for the terms in the series expansion of the actual function.

Thus, for example, if the actual model error was of the form sin(x), but sin(x) was not present

in the library, the correlation coefficients are highest for the terms :e, _n, _s, etc. However, the

test described by Eq. 7 is very fast, so the library may contain a very large number of terms.

The final step in the identification procedure is to use a least-squares algorithm to fit the

model error to the functional forms (i.e., perform parameter identification once the true nonlinear

form has been determined). The error term is expanded into a combination of the functional

forms such as

d(t) = afl(__(t)) + _f2(_(t)) + 7f3(_(t)) +... (11)
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where a, 8, 3", ..- are unknown coefficients to be determined by least squares, and fl, f2,

fs .... are functions which are selected as a result of the correlation test (often, however, only

one function is used at a time). Other parameters may be present inside the functions (such

as, for example, coefficients of exponents). Eq. (11) may be sampled repeatedly (using the

MME estimates) to obtain

d(tl) = Otfl(_(tl) ) -_/_f2C_Ctl)) -JF 3'f3(_(tl)) ._t. , ,

d(t2) = afl(_(t2)) + fl/_(z__(t2)) + 3'f3(__(t2)) + ...

a(t ) = + f f2( (tz)) + +...

or, in matrix form,

Dlxl = MtxpP--vxl (12)

where _P = [a fl 3' ...}r is the vector of coefficients for the terms in d(t). Since estimates of

d(t) are available continuously throughout the time domain, the parameter I may be chosen quite

large to improve the least squares fit. Generally, because of the potential jump discontinuities

in the model error estimates at the measurement times, it is desirable to pick the least squares

sampling times in Eq. (12) at points other than the measurement times. The least squares

estimate is found by minimizing the following cost functional with respect to P:

,_ = [D_D_-MP__IT[.o_- M_P] (13 /

The solution is given by

P=(MTM)-IMTD (14)

If the functions include parameters to be estimated, the equivalent nonlinear least-squares problem

is constructed.

The multiple shooting algorithm presented by Mook and Lew [31] was used to obtain the

MME solutions used in the tests presented in this paper. It was assumed in the examples that

MME obtained the dynamic error term without knowledge of the boundary conditions on _,

so some distortion of the correction term at the initial and final times was expected due to the

constraints of Eqs. (5e-5f), i.e., by assuming no state knowledge is available at to or t f, we

constrain _(to) = 0 and )_(t/) = 0. Therefore, in all test cases, the initial and final ten percent

of the correction term data was ignored in the least squares fit.

EXAMPLES

For illustrative purposes, the true system was chosen as a simple harmonic oscillator with

various forms of nonlinear feedback, The true system can be modeled as

(_)= (?1 10)(_)q-(f(zO, v)) (15)
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where z is position, v is velocity and the dot indicates differentiation with respect to time. For

simplicity, the system was unforced. The term f(z,v) represents the nonlinear terms to be

identified by the MME-based identification algorithm. Measurements were generated from the

true system, Eq. (15), with different kinds of nonlinear functions f(x,v). The ability of the

identification algorithm to identify the model with no prior knowledge of f(_, v) is tested. Table

1 shows the functions used in each simulation. Note that the unknown error term may be a

combination of linear and nonlinear functions. Table 1 also shows the initial conditions and the

amount of noise used to generate measurements for each test. The noise levels represent the

percentage of the peak system response (actual percentages are higher for the majority of the

measurements since the response is only at peak amplitude for brief periods).

Table 1

SUMMARY oF TEST CASES

TEST #

2

3

4

5

TRUE ERROR: f(x,v)
I

3.0*x*x

-0.1*x*x*v

-0.5*cos(x)*cos(v)

- 1.0*v'sin(x)

x(O)

0.175

0.175

v(0)

0

0

0

0

NOISE

0

0.175

0.175

0.350

0.873

1.750

0.175

0.350

0.873

0

0

0

-1.0*x*x - 0.25"v 0 0

6 - 1.0*x*x*x - 0. l'tan(v) 0 0

-1.0/cos(x)- 1.0*sin(v) 0 07

8

-1.0*x*x*x - 0. l'tan(v)

3.0*x*x 0 10%

9 -1.0*x*x - 0.25"v 0 10%

10 0 10%

The assumed model used for the MME analysis consisted of the undamped linear oscillator

part of the system,

(_) : (O 1 10)(:) (16)

For each test, 200 measurements of position were obtained from the digital simulation of Eq. (15)

at a sampling rate of 10 Hz. The functional form of the dynamic error, f(x, v), was determined

solely from the least-squares fit of the functions identified during the correlation tests on the

MME state and model error estimates obtained using only the model in Eq. (16).

A library of functions was built consisting of approximately 300 of the most commonly

found nonlinear and linear forms. For a particular test, after the model error term was found
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from MME, it wascorrelatedwith eachoneof the functionsin the library. The correlationtest
of the entire library of functions did not takemore than a few secondsto execute,since the
calculationsaresimple. The functionalform of theunknown nonlinearterm waschosenasthe
one for which the absolutevalueof thecross-correlationcoefficientwasclosestto 1. Table2
showstheresultsfor all 10 tests,including thetruedynamicerror, the highestcross-correlation
coefficientobtained,thecorrespondingfunctionalform, andthe respectivecoefficientcomputed
from the least squaresfit. The star (*) indicatestestsperformedfrom noisy measurements.

Table 2.

IDENTIFICATION RESULTS FOR EACH TEST CASE

TEST# TRUE ERROR(S)

3.0*x*x

-0. l*x*x*v

3 -0.5*cos(x)*cos(v)
4 -1.0*v'sin(x)
5 -1.0*x*x

7

8:_

9 •

10"

-0.25"v

-1.0*x*x*x

-0.1*tan_v)

-1.0/cos(x)

-1.0*x*x

-0.25"v

-1.0*x*x*x

-0.1*tan(v)

C(d(t),0!

0.999

0.999
I I

0.999

0.999

0.999

0.746

0.936

0.999

0.927

0.999

0.797

0.937

0.772

0.838

0.583

SELECTED

X*X

cos(x)*cos(v 
v*sin(x /

X_X

x*x*v -0.10

-0.49

tanlv)

1/cos(x)

tan(v)

-0.24

-1.00

-0.10

-0.99

sin(v) - 1.00
II

x*x 3.12

x*x -0.90

v -0.22

x*x*x -0.98

-0.10

For tests 1, 2, 3, and 4, the exact form of the nonlinearity was contained in the library and

the measurements did not contain noise. The calculated value of G(d(t), f) was 1 for the true

forms. In test 8, the library contained the exact form of the nonlinearity but the measurements

contained significant noise. The correlation for the correct term was much higher than for any

other term, but was approximately 0.8 instead of 1 due to the noise. In the cases where the

error term consisted of two functions but the measurements were noise-free (tests 5, 6 and

7), G(d(t), f) was close to one for both functions after applying the algorithm iteratively as

described in the previous section.

When noise and more than one function was present in the dynamic error term (tests 9 and

10), the maximum value of the cross-correlation coefficients dropped significantly and in some

cases did not immediately identify the actual form over other similar forms. As an example,
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Table3 showsthe top five cross-correlationvaluesfor the identificationof the tan(v) term in

test case 10. Note that the functions with the highest cross-correlation values are all similar in

form to tan(v), and the corresponding correlation coefficients are of similar magnitude. Since

C(d(t), f) did not clearly identify tan(v) as the missing term, the five functions yielding the

highest G(d(t), f) values were individually least-squares fit to the model error term. In all cases

(i.e., repeating this test for a number of different random noise samples), the function with the

smallest least squares error cost was the correct function (tan(v)). Thus, the least-squares fit

of the parameters to the functional forms also serves as a second test if the correlation test is

inconclusive due to high noise levels.

Table 3.

HIGHEST CROSS-CORRELATION COEFFICIENTS

OBTAINED FOR THE TAN(V) TERM OF TEST CASE 10

FUNCTION

tan(v)

C(d(t),f)

sin(v)*cos(x)

L.S.

0.583 -0.104

L.S. cost

0.588

v 0.584 -0.119 0.623

v*cos(x)*cos(v) 0.584 -0.150 0.659

v'cos(x) 0.586 -0.126 0.607

0.586 -0.133 0.621

The number of data points used in the MME algorithm was irrelevant as long as there were

enough points to reasonably span the qualitative aspects of the system (e.g., sinusoidal terms

cannot be identified if the data only spans a small fraction of the period).

If the exact functional form of the dynamic error term was not in the function library, the

correlation procedure would pick the first term in the Taylor Series expansion of the exact form.

For example in a test case where the dynamic error term corresponded to x, sin(v) and x. sin(v)

was deleted from the library, the function with the largest C(d(t), f) was x • v. Similarly, in

several examples which are not shown the magnitude of the states, _ and v, were small. Thus,

the trigonometric functions of position and velocity were approximately equal to the first term in

their Taylor Series expansions, i.e., cos(z) _ 1.0, sin(_) ,,_ x, cos(v) ,_ 1.0 and sin(v) _ v. In

these cases, assumptions of linearity are clearly valid, and are not of interest in the present work.

SUMMARY AND CONCLUSIONS

In this paper, an algorithm based on the MME estimation technique, coupled with correlation

tests and least squares, has been developed for identification of nonlinear systems. The results

of the examples indicate that the correlation technique applied to the MME-produced state and
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modelerrorestimatesenablestheform of themodelto beaccuratelydetermined,thuseliminating
therequirementthattheform beassumeda priori. Oncetheform is determined,theleast-squares
fit providesexcellentparameteridentification.In casesof high noise,wherethe correlationtest
may not be able to distinguishthe actual form from similar forms, the least-squaresfit also
provedto be a reliable secondtest for determiningthe actualform.

At nopoint in thealgorithmis theuserrequiredto assumetheform of themodel,representing
atremendousadvantageoverexistingtechniques,including thepreviousMME-basedwork. The
MME doesnot require an accuratemodel in order to produceaccuratestateand model error
estimates,and the correlationtestsare automaticallyperformedon a large existing library of
functions.Additional functionsandmoresophisticatedmethodsof combiningexistingfunctions
canbeaddedto thecorrelationtestingportionof thealgorithm(theauthorsarecurrentlypursuing
this), virtually eliminating the likelihood that theactualmodelerror termsarenot tested.
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